Bibliometrics Research in the Era of Big Data: Challenges and Opportunities

Dietmar Wolfram
University of Wisconsin-Milwaukee
Big Data Research

- LIGO Gravitational Wave Detection Observatory
- 1.7 billion files of data processed, requiring 26PB of storage
Presentation Organization

• Overview
• Current Issues
• Big data aspects of network-based & text-based bibliometric analysis
• Opportunities & ongoing challenges
Early Bibliometric Datasets

• Lotka (1926) – used 6891 & 1325 authors for his datasets

• Bradford (1934) – used 326 journals with 1332 references

• Zipf (1949) – generally used < 10K words types

“Kaeding’s total bulk of nearly 11 million running words so far overshoots a sample of optimum size that it is of little practical use to us.” Section 3.IV
Visualization of Early Bibliometric Data

The relationship between authors and publications
Big Data in Bibliometrics Today

The relationship between 22M documents covering all areas of scholarship

http://www.mapofscience.com/
What has Changed?

✓ Much more available data

✓ Better data processing methods

✓ New analytical tools for numeric & textual data
What is “Big” in Bibliometrics?

• Bibliographic datasets are usually more bounded than data used in other scientific disciplines
 – Recorded discourses (articles, books) are still manageable

• For other areas, very large sets are available
 – Full text corpora
 – Web links
 – Social media data
Data Issues

1. Data accessibility
2. Size & dimensionality of datasets
3. Data analysis & summarization approaches for
 - Entities of interest (authors, papers, journals) based on network or text analysis
 - Revealing overt & hidden relationships
1) Data Accessibility

• Database providers may limit access to full data
 – If available, cost may be a limiting factor

• Privacy issues for personal & transaction log data
 – Few providers are now willing to share data

• Storage availability
 – Storage is cheap these days, so is data transfer
2a) Size: Is More Data Always Better?

• Complete data is a good idea ... but is it good data?
 – Addresses the population and not just a sample

• Raw data may require extensive cleaning and standardization if from different sources
 – More data ⇒ More initial processing

• “... brute force computation with big data may lead to false discoveries and spurious correlations ...” Prathap (2014)
Example: The Impact of Dataset Size

• Dataset size may affect conclusions drawn for some types of bibliometric datasets

2b) Dimensionality: High Data

Dimensionality Issues

• Large datasets & complex relationships lead to high dimensional data representation (e.g., vector space model)

• High dimensionality \Rightarrow Larger computational overhead

• Need ways to reduce dimensionality without losing essence of relationships
3) Processing Large Datasets

• Can apply dimensionality reduction based on statistical methods
 – Visualization (2 & 3 dimensions)
 – Factor analysis
 – Clustering

• Use mining and pattern detection methods to reveal hidden relationships

• Different methods may be needed for link-based data (e.g., citations, collaboration) and textual data
Data Analysis Challenges

• Many techniques are available

• Which is best, most reliable and most valid?
 – Different methods provide different outcomes
 – Some will provide a “goodness of fit” or loss function to indicate reliability of the outcome
Map of Human Knowledge

What does this tell us?

Does it prove anything?
Exploration of Large Datasets

• Software and statistical tools permit summarization of large datasets

• Can rely on numeric or textual features of data
 – Bibliographic data (surrogates, full text)
 – Information system content & usage
 – Social media
Clustering of Search Session Patterns

Based on 163,526 search sessions
Using Network Analysis Software

• Software can visualize and analyze network-based relationships

• Many examples can handle large datasets
 – Pajek, Gephi (general network analysis)
 – CiteSpace, Sci², VOSviewer (metrics-focused)
Identifying Hidden Relationships & Patterns

• Data mining (Thelwall, 2001)
• Text mining (Song & Chambers, 2014)
• Clustering/classification (Glänzel & Schubert, 2003)
• Community detection (Bohlin et al., 2014)
Search Session Pattern Mining

<table>
<thead>
<tr>
<th>Pattern sequence</th>
<th># of sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI SI</td>
<td>9831</td>
</tr>
<tr>
<td>SS SI</td>
<td>8262</td>
</tr>
<tr>
<td>SS SS</td>
<td>8212</td>
</tr>
<tr>
<td>SI SI SI</td>
<td>7495</td>
</tr>
<tr>
<td>SI SS</td>
<td>7219</td>
</tr>
<tr>
<td>SS SI SS</td>
<td>6059</td>
</tr>
<tr>
<td>SS SS SS</td>
<td>5871</td>
</tr>
<tr>
<td>SI SI SI SI</td>
<td>5843</td>
</tr>
<tr>
<td>SS SS SI SI</td>
<td>5779</td>
</tr>
<tr>
<td>SI SS SI SI</td>
<td>5777</td>
</tr>
<tr>
<td>PR PR</td>
<td>5357</td>
</tr>
<tr>
<td>LP SS</td>
<td>5270</td>
</tr>
<tr>
<td>PR SI</td>
<td>5181</td>
</tr>
<tr>
<td>SI PR</td>
<td>5116</td>
</tr>
<tr>
<td>SI SI SS</td>
<td>4920</td>
</tr>
<tr>
<td>SS SI SS SI</td>
<td>4821</td>
</tr>
<tr>
<td>SI SI SI SI SI</td>
<td>4768</td>
</tr>
<tr>
<td>LP SI</td>
<td>4729</td>
</tr>
<tr>
<td>LP LP</td>
<td>4666</td>
</tr>
</tbody>
</table>

Network-based vs. Text-based Metrics

• Citations & collaborations form the foundation of traditional comparative analysis

• **Downside:** No link \Rightarrow No relationship

• Language can expand relationship possibilities
 - Term co-occurrence
 - Topic modeling
 - Identify hidden patterns with text mining
Dealing with Large Text-based Corpora

• Language-based methods have greatly benefitted bibliometrics research
 – Natural Language Processing (NLP)
 – Text mining
 – Topic modeling

• Methods scale reasonably well

• Need large enough corpora to provide reliable outcomes
1) Co-word Analysis

• Longstanding use in metrics research (e.g., Braam & Moed, 1991; Ding, Chowdhury & Foo, 1997)

• Simple to use

• Independence assumption limitations

• Information retrieval matching methods can be used
2) Topic Modeling

• Applications of topic modeling
 – Tang et al. (2008) – applied Latent Dirichlet Allocation to academic search
 – Lu & Wolfram (2012) – compared author research similarity using topic modeling, co-authorship & co-citation
 – Ding & Song (2014) – measuring scholarly impact
An A-T model produced more coherent groupings of prolific authors in information science than co-citation analysis.

3) Text Mining

• Can be combined with bibliometric methods
 – Citation mining for user research profiling (Kostoff et al., 2001)
 – Clustering of scientific fields (Janssens, 2007)
 – Knowledge structure of bioinformatics (Song & Kim, 2013)

• Text mining techniques are integrated into some bibliometric mapping software, including
 – VOSviewer (http://www.vosviewer.com/)
 – CiteSpace (http://cluster.cis.drexel.edu/~cchen/citespace/)
Ongoing Issues

• Access to high quality data
• Processing overhead – techniques can demand high performance computing resources
• Multiple ways to address big data summarization with different outcomes
• Better methods needed for assessing outcomes
Future Directions

• Complexities of bibliometric datasets lend themselves to Information Retrieval techniques
 – Resulting “big data” require data and text processing or mining techniques to identify overt & hidden patterns

• Topic modeling and other text-based methods show great promise for providing complementary approaches to citation & co-authorship data
 – Computational overhead to train models is still high
For More Information

Thank you
Obrigado

Email: dwolfram@uwm.edu
LinkedIn: www.linkedin.com/in/DietmarWolfram/
Academia.edu: uwm.academia.edu/DietmarWolfram/